martes, 8 de noviembre de 2011

unidad 1 GENERALIDADES

unidad 1 generalidades

Lipidos
Los lípidos son un conjunto de moléculas orgánicas, la mayoría son biomoléculas, compuestas principalmente por carbono e hidrógeno y en menor medida oxígeno, aunque también pueden contener fósforo, azufre y nitrógeno, tienen como característica principal el ser hidrofóbicas o insolubles enagua y sí en solventes orgánicos como la bencina, el benceno y el cloroformo. En el uso coloquial, a los lípidos se les llama incorrectamente grasas, ya que las grasas son sólo un tipo de lípidos procedentes de animales. Los lípidos cumplen funciones diversas en los organismos vivientes, entre ellas la de reserva energética (triglicéridos), la estructural (fosfolípidos de las bicapas) y la reguladora (esteroides).
Son lípidos saponificables en cuya composición química sólo intervienen carbono, hidrógeno y oxígeno.
Son lípidos simples formados por la esterificación de una,dos o tres moléculas de ácidos grasos con una molécula de glicerina. También reciben el nombre de glicéridos o grasas simples
 Para ver el gráfico seleccione la opción "Descargar" del menú superior
Según el número de ácidos grasos, se distinguen tres tipos de estos lípidos:
·         los monoglicéridos, que contienen una molécula de ácido graso
·         los diglicéridos, con dos moléculas de ácidos grasos
·         los triglicéridos, con tres moléculas de ácidos grasos.
Los acilglicéridos frente a bases dan lugar a reacciones de saponificación en la que se producen moléculas de jabón.
Ceras
Las ceras son ésteres de ácidos grasos de cadena larga, con alcoholes también de cadena larga. En general son sólidas y totalmente insolubles en agua. Todas las funciones que realizan están relacionadas con su impermeabilidad al agua y con su consistencia firme. Así las plumas, el pelo , la piel,las hojas, frutos, están cubiertas de una capa cérea protectora.
Una de las ceras más conocidas es la que segregan las abejas para confeccionar su panal.
Son lípidos saponificables en cuya estructura molecular además de carbono, hidrógeno y oxígeno, hay también nitrógeno,fósforo, azufre o un glúcido.
Son las principales moléculas constitutivas de la doble capa lipídica de la membrana, por lo que también se llaman
 lípidos de membrana. Son tammbién moléculas anfipáticas.
Se caracterizan pr presentar un ácido ortofosfórico en su zona polar. Son las moléculas más abundantes de la membrana citoplasmática.
Algunos ejemplos de fosfolípidos
 Para ver los gráficos seleccione la opción "Descargar" del menú superior
Son lípidos complejos que se caracterizan por poseer un glúcido. Se encuentran formando parte de las bicapas lipídicas de las membranas de todas las células, especialmente de las neuronas. Se sitúan en la cara externa de la membrana celular, en donde realizan una función de relación celular, siendo receptores de moléculas externas que darán lugar a respuestas celulares.
Son moléculas lineales o cíclicas que cumplen funciones muy variadas, entre los que se pueden citar:
·         Esencias vegetales como el mentol, el geraniol, limoneno, alcanfor, eucaliptol,vainillina.
·         Vitaminas, como la vit.A, vit. E, vit.K.
·         Pigmentos vegetales, como la carotina y la xantofila.
FUNCIONES DE LOS LÍPIDOS




Descripción: http://www.ehu.es/biomoleculas/lipidos/jpg/foca.jpgLos lípidos (generalmente en forma de triacilgiceroles) constituyen la reserva energética de uso tardío o diferido del organismo. Su contenido calórico es muy alto (10 Kcal/gramo), y representan una forma compacta y anhidra de almacenamiento de energía.
A diferencia de los hidratos de carbono, que pueden metabolizarse en presencia o en ausencia de oxígeno, los lípidos sólo pueden metabolizarse aeróbicamente.
Descripción: http://www.ehu.es/biomoleculas/lipidos/jpg/food.gif
Descripción: http://www.ehu.es/biomoleculas/lipidos/jpg/fats.gif
Función energetica 
RESERVA DE AGUA

Descripción: http://www.ehu.es/biomoleculas/lipidos/jpg/camel.jpgAunque parezca paradójico, los lípidos representan una importante reserva de agua. Al poseer un grado de reducción mucho mayor el de los hidratos de carbono, la combustión aerobia de los lípidos produce una gran cantidad de agua (agua metabólica). Así, la combustión de un mol de ácido palmítico puede producir hasta 146 moles de agua (32 por la combustión directa del palmítico, y el resto por la fosforilación oxidativa acoplada a la respiración). En animales desérticos, las reservas grasas se utilizan principalmente para producir agua (es el caso de la reserva grasa de la joroba de camellos y drome
PRODUCCIÓN DE CALOR

Descripción: http://www.ehu.es/biomoleculas/lipidos/jpg/bat.jpgEn algunos animales hay un tejido adiposo especializado que se llama grasa parda o grasa marrón. En este tejido, la combustión de los lípidos está desacoplada de la fosforilación oxidativa, por lo que no se produce ATP, y la mayor parte de la energía derivada de la combustión de los triacilgliceroles se destina a la producción de calor.
En los animales que hibernan, la grasa marrón se encarga de generar la energía calórica necesaria para los largos períodos de hibernación. En este proceso, un oso puede llegar a perder hasta el 20% de su masa corporal.

Aislante térmico
Generan calor durante la hibernación
Descripción: http://www.ehu.es/biomoleculas/lipidos/jpg/calor.jpg
Descripción: http://www.ehu.es/biomoleculas/lipidos/jpg/bear2.jpg
FUNCIÓN ESTRUCTURAL

El medio biológico es un medio acuoso. Las células, a su vez, están rodeadas por otro medio acuoso. Por lo tanto, para poder delimitar bien el espacio celular, la interfase célula-medio debe ser necesariamente hidrofóbica. Esta interfase está formada por lípidos de tipo anfipático, que tienen una parte de la molécula de tipo hidrofóbico y otra parte de tipo hidrofílico. En medio acuoso, estos lípidos tienden a autoestructurarse formando la bicapa lipídica de la membrana plasmática que rodea la célula.
Descripción: http://www.ehu.es/biomoleculas/lipidos/jpg/fluid_mosiac.gif
En las células eucariotas existen una serie de orgánulos celulares (núcleo, mitocondrias, cloroplastos, lisosomas, etc) que también están rodeados por una membrana constituída, principalmente por una bicapa lipídica compuesta por fosfolípidos. Las ceras son un tipo de lípidos neutros, cuya principal función es la de protección mecánica de las estructuras donde aparecen.
FUNCIÓN INFORMATIVA

Los organismos pluricelulares han desarrollado distintos sistemas de comunicación entre sus órganos y tejidos. Así, el sistema endocrino genera señales químicas para la adaptación del organismo a circunstancias medioambientales diversas. Estas señales reciben el nombre de hormonas. Muchas de estas hormonas (esteroides, prostaglandinas, leucotrienos, calciferoles, etc) tienen estructura lipídica.
Funcionamiento de las hormonas esteroideas
Algunos usos de las hormonas esteroideas
Descripción: http://www.ehu.es/biomoleculas/lipidos/jpg/steroids.gif
Descripción: http://www.ehu.es/biomoleculas/lipidos/jpg/esteroids.jpg
Estos enlaces te llevan a páginas con información sobre el uso de esteroides anabolizantes en la práctica deportiva: Enlace 1Enlace 2.
En otros casos, los lípidos pueden funcionar como segundos mensajeros. Esto ocurre cuando se activan las fosfolipasas o las esfingomielinasas e hidrolizan glicerolípidos o esfingolípidos generando diversos compuestos que actúan como segundos mensajeros (diacilgliceroles, ceramidas, inositolfosfatos, etc) que intervienen en multitud de procesos celulares.
FUNCIÓN CATALÍTICA o biocatalizadora

Descripción: http://www.ehu.es/biomoleculas/lipidos/jpg/betacarotinecaps.jpgDescripción: http://www.ehu.es/biomoleculas/lipidos/jpg/vita.jpgHay una serie de sustancias que son vitales para el correcto funcionamiento del organismo, y que no pueden ser sintetizadas por éste. Por lo tanto deben ser necesariamente suministradas en su dieta. Estas sustancias reciben el nombre de vitaminas. La función de muchas vitaminas consiste en actuar como cofactores de enzimas (proteínas que catalizan reacciones biológicas). En ausencia de su cofactor, el enzima no puede funcionar, y la vía metabólica queda interrumpida, con todos los perjuicios que ello pueda ocasionar. Ejemplos son los retinoides (vitamina A), los tocoferoles (vitamina E), las naftoquinonas (vitamina K) y los calciferoles (vitamina D).

Los lípidos son un grupo muy heterogéneo que comparte dos importantes características:
·         Son insolubles en agua y en otros solubles pobres
·         Son solubles en disolventes organicos no pobres 

Glúcidos
Los glúcidos están compuestos por carbono, hidrógeno y oxígeno, por ello también se les llama carbohidratos o hidratos de carbono.
Los glúcidos, carbohidratos, hidratos de carbono o sacáridos (del griego σάκχαρον que significa "azúcar") son moléculas orgánicascompuestas por carbono, hidrógeno y oxígeno. Son solubles en agua y se clasifican de acuerdo a la cantidad de carbonos o por el grupo funcional aldehído. Son la forma biológica primaria de almacenamiento y consumo de energía. Otras biomoléculas energéticas son las grasasy, en menor medida, las proteínas. El término "hidrato de carbono" o "carbohidrato" es poco apropiado, ya que estas moléculas no son átomos de carbono hidratados, es decir, enlazados a moléculas de agua, sino que constan de átomos de carbono unidos a otros grupos funcionales.
Los glúcidos se pueden clasificar en dos grandes grupos:

1. Los glúcidos simples. También llamados monosacáridos, azúcares simples u osas simples.
2. Los glúcidos compuestos. También llamados azúcares complejos u osas complejas. Son estructuras compuestas de varias osas simples. Disacáridos, cuando son dos osas. Trisacáridos, cuando son tres osas. Polisacáridos cuando son más de tres osas o monosacáridos.

Las estructuras de glúcidos que nuestro organismo es capaz de aprovechar son los glúcidos que contienen el monosacárido llamado glucosa.
Simples
·         Monosacáridos: glucosa o fructosa
·         Disacáridos: formados por la unión de dos monosacáridos iguales o distintos: lactosa, maltosa, sacarosa, etc.
·         Oligosacáridos: polímeros de hasta 20 unidades de monosacáridos.
Complejos
·         Polisacáridos: están formados por la unión de más de 20 monosacáridos simples.
·         Función de reserva: almidón, glucógeno y dextranos.
·         Función estructural: celulosa y xilanos.


Funciones
FUNCIÓN DE LOS GLÚCIDOS EN NUESTRO CUERPO
Esta sustancia es el principal combustible que los músculos y otras partes del organismo consumen para obtener energía. Está presente en cada célula y casi en cada fluido orgánico, y la regulación de su concentración y distribución constituye uno de los procesos más importantes de la fisiología humana. Entre otros azúcares menos importantes destaca la lactosa, o azúcar de la leche, que se forma en las glándulas mamarias de todos los animalesmamíferos y que está presente en su leche.
Funciones de los glucidos
·         Función energética. Cada gramo de carbohidratos aporta una energía de 4 Kcal. Ocupan el primer lugar en el requerimiento diario de nutrientes debido a que nos aportan el combustible necesario para realizar las funciones orgánicas, físicas y psicológicas de nuestro organismo.
·         Una vez ingeridos, los carbohidratos se hidrolizan a glucosa, la sustancia más simple. La glucosa es de suma importancia para el correcto funcionamiento del sistema nervioso central (SNC) Diariamente, nuestro cerebro consume más o menos 100 g. de glucosa, cuando estamos en ayuno, SNC recurre a los cuerpos cetónicos que existen en bajas concentraciones, es por eso que en condiciones de hipoglucemia podemos sentirnos mareados o cansados.
·         También ayudan al metabolismo de las grasas e impiden la oxidación de las proteínas. La fermentación de la lactosa ayuda a la proliferación de la flora bacteriana favorable.

Acidos Nucleicos
Los ácidos nucleicos son macromoléculaspolímeros formados por la repetición de monómeros llamados nucleótidos, unidos mediante enlaces fosfodiéster. Se forman, así, largas cadenas o polinucleótidos, lo que hace que algunas de estas moléculas lleguen a alcanzar tamaños gigantes (de millones de nucleótidos de largo).
El descubrimiento de los ácidos nucleicos se debe a Friedrich Miescher, quien en el año 1869 aisló de los núcleos de las células una sustancia ácida a la que llamó nucleína, nombre que posteriormente se cambió a ácido nucleico. Posteriormente, en 1953, James Watson y Francis Crick se encargaron de descrubrir el diseño del ADN.
Las unidades que forman los ácidos nucleicos son los nucleótidos. Cada nucleótido es una molécula compuesta por la unión de tres unidades: un monosacárido de cinco carbonos (una pentosa, ribosa en el ARN y desoxirribosa en el ADN), una base nitrogenada purínica (adenina, guanina) o pirimidínica (citosina, timina o uracilo) y uno o varios grupos fosfato (ácido fosfórico). Tanto la base nitrogenada como los grupos fosfato están unidos a la pentosa.
La unión formada por la pentosa y la base nitrogenada se denomina nucleósido. Cuando lleva unido una unidad de fosfato al carbono 5' de la ribosa o desoxirribosa y dicho fosfato sirve de enlace entre nucleótidos, uniéndose al carbono 3' del siguiente nucleótido; se denomina nucleótido-monofosfato (como el AMP) cuando hay un solo grupo fosfato, nucleótido-difosfato (como el ADP) si lleva dos y nucleótido-trifosfato (como el ATP) si lleva tres.

[editar]Listado de las bases nitrogenadas

Las bases nitrogenadas conocidas son:
§  Adenina, presente en ADN y ARN
§  Guanina, presente en ADN y ARN
§  Citosina, presente en ADN y ARN



ADN
Artículo principal: ADN
El ADN es bicatenario, está constituido por dos cadenas polinucleotídicas unidas entre sí en toda su longitud. Esta doble cadena puede disponerse en forma lineal (ADN del núcleo de las células eucarióticas) o en forma circular (ADN de las células procarióticas, así como de las mitocondrias y cloroplastos eucarióticos). La molécula de ADN porta la información necesaria para el desarrollo de las características biológicas de un individuo y contiene los mensajes e instrucciones para que las células realicen sus funciones. Dependiendo de la composición del ADN (refiriéndose a composición como la secuencia particular de bases), puede desnaturalizarse o romperse los puentes de hidrógenos entre bases pasando a ADN de cadena simple o ADNsc abreviadamente.
Excepcionalmente, el ADN de algunos virus es monocatenario, es decir, está formado por un solo polinucleótido, sin cadena complementaria.


ARN
El ARN difiere del ADN en que la pentosa de los nucleótidos constituyentes es ribosa en lugar de desoxirribosa, y en que, en lugar de las cuatro bases A, G, C, T, aparece A, G, C, U (es decir, uracilo en lugar de timina). Las cadenas de ARN son más cortas que las de ADN, aunque dicha característica es debido a consideraciones de carácter biológico, ya que no existe limitación química para formar cadenas de ARN tan largas como de ADN, al ser el enlace fosfodiéster químicamente idéntico. El ARN está constituido casi siempre por una única cadena (es monocatenario), aunque en ciertas situaciones, como en los ARNt y ARNr puede formar estructuras plegadas complejas.
Mientras que el ADN contiene la información, el ARN expresa dicha información, pasando de una secuencia lineal de nucleótidos, a una secuencia lineal de aminoácidos en una proteína. Para expresar dicha información, se necesitan varias etapas y, en consecuencia, existen varios tipos de ARN:
§  El ARN mensajero se sintetiza en el núcleo de la célula, y su secuencia de bases es complementaria de un fragmento de una de las cadenas de ADN. Actúa como intermediario en el traslado de la información genética desde el núcleo hasta el citoplasma. Poco después de su síntesis sale del núcleo a través de los poros nucleares asociándose a los ribosomas donde actúa como matriz o molde que ordena los aminoácidos en la cadena proteica. Su vida es muy corta: una vez cumplida su misión, se destruye.
§  El ARN de transferencia existe en forma de moléculas relativamente pequeñas. La única hebra de la que consta la molécula puede llegar a presentar zonas de estructura secundaria gracias a los enlaces por puente de hidrógeno que se forman entre bases complementarias, lo que da lugar a que se formen una serie de brazos, bucles o asas. Su función es la de captar aminoácidos en el citoplasma uniéndose a ellos y transportándolos hasta los ribosomas, colocándolos en el lugar adecuado que indica la secuencia de nucleótidos del ARN mensajero para llegar a la síntesis de una cadena polipeptídica determinada y por lo tanto, a la síntesis de una proteína.
§  El ARN ribosómico es el más abundante (80 por ciento del total del ARN), se encuentra en los ribosomas y forma parte de ellos, aunque también existen proteínas ribosómicas. El ARN ribosómico recién sintetizado es empaquetado inmediatamente con proteínas ribosómicas, dando lugar a las subunidades del ribosoma.


Rosalind-Franklin  fue la primera científica en interesarse por el ADN fue la primera descubridora
Posteriormente científicos como Watson y Crick fueron quien descubrieron la molecula del ADN  y a quienes se les otorgo  el premio.